Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.140
Filtrar
1.
Mol Biol Rep ; 51(1): 402, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456942

RESUMO

BACKGROUND: Acetyl-CoA carboxylase (ACC) catalyzes the carboxylation of acetyl-CoA to malonyl-CoA. Malonyl-CoA, which plays a key role in regulating glucose and lipid metabolism, is not only a substrate for fatty acid synthesis but also an inhibitor of the oxidation pathway. ACC exists as two isoenzymes that are encoded by two different genes. ACC1 in grass carp (Ctenopharyngodon idellus) has been cloned and sequenced. However, studies on the cloning, tissue distribution, and function of ACC2 in grass carp were still rare. METHODS AND RESULTS: The full-length cDNA of acc2 was 8537 bp with a 7146 bp open reading frame encoding 2381 amino acids. ACC2 had a calculated molecular weight of 268.209 kDa and an isoelectric point of 5.85. ACC2 of the grass carp shared the closest relationship with that of the common carp (Sinocyclocheilus grahami). The expressions of acc1 and acc2 mRNA were detected in all examined tissues.  The expression level of acc1 was high in the brain and fat but absent in the midgut and hindgut. The expression level of acc2 in the kidney was significantly higher than in other tissues, followed by the heart, brain, muscle, and spleen. ACCs inhibitor significantly reduced the levels of glucose, malonyl-CoA, and triglyceride in hepatocytes. CONCLUSIONS: This study showed that the function of ACC2 was evolutionarily conserved from fish to mammals. ACCs inhibitor inhibited the biological activity of ACCs, and reduced fat accumulation in grass carp.


Assuntos
Carpas , Animais , Carpas/genética , Carpas/metabolismo , Clonagem Molecular , Sequência de Bases , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Expressão Gênica , Glucose , Mamíferos/metabolismo
2.
Cell Rep Med ; 5(2): 101401, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340725

RESUMO

The p63 protein has pleiotropic functions and, in the liver, participates in the progression of nonalcoholic fatty liver disease (NAFLD). However, its functions in hepatic stellate cells (HSCs) have not yet been explored. TAp63 is induced in HSCs from animal models and patients with liver fibrosis and its levels positively correlate with NAFLD activity score and fibrosis stage. In mice, genetic depletion of TAp63 in HSCs reduces the diet-induced liver fibrosis. In vitro silencing of p63 blunts TGF-ß1-induced HSCs activation by reducing mitochondrial respiration and glycolysis, as well as decreasing acetyl CoA carboxylase 1 (ACC1). Ectopic expression of TAp63 induces the activation of HSCs and increases the expression and activity of ACC1 by promoting the transcriptional activity of HER2. Genetic inhibition of both HER2 and ACC1 blunt TAp63-induced activation of HSCs. Thus, TAp63 induces HSC activation by stimulating the HER2-ACC1 axis and participates in the development of liver fibrosis.


Assuntos
Células Estreladas do Fígado , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Ativação Metabólica , Cirrose Hepática/genética , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Fibrose , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo
3.
Biotechnol Appl Biochem ; 71(2): 402-413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287712

RESUMO

Malonyl-CoA serves as the main building block for the biosynthesis of many important polyketides, as well as fatty acid-derived compounds, such as biofuel. Escherichia coli, Corynebacterium gultamicum, and Saccharomyces cerevisiae have recently been engineered for the biosynthesis of such compounds. However, the developed processes and strains often have insufficient productivity. In the current study, we used enzyme-engineering approach to improve the binding of acetyl-CoA with ACC. We generated different mutations, and the impact was calculated, which reported that three mutations, that is, S343A, T347W, and S350W, significantly improve the substrate binding. Molecular docking investigation revealed an altered binding network compared to the wild type. In mutants, additional interactions stabilize the binding of the inner tail of acetyl-CoA. Using molecular simulation, the stability, compactness, hydrogen bonding, and protein motions were estimated, revealing different dynamic properties owned by the mutants only but not by the wild type. The findings were further validated by using the binding-free energy (BFE) method, which revealed these mutations as favorable substitutions. The total BFE was reported to be -52.66 ± 0.11 kcal/mol for the wild type, -55.87 ± 0.16 kcal/mol for the S343A mutant, -60.52 ± 0.25 kcal/mol for T347W mutant, and -59.64 ± 0.25 kcal/mol for the S350W mutant. This shows that the binding of the substrate is increased due to the induced mutations and strongly corroborates with the docking results. In sum, this study provides information regarding the essential hotspot residues for the substrate binding and can be used for application in industrial processes.


Assuntos
Acetil-CoA Carboxilase , Streptomyces antibioticus , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Streptomyces antibioticus/metabolismo , Acetilcoenzima A/genética , Simulação de Acoplamento Molecular , Mutação , Saccharomyces cerevisiae/metabolismo , Escherichia coli/metabolismo
4.
Free Radic Biol Med ; 212: 464-476, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38211832

RESUMO

Lipid metabolic reprogramming has been recognized as a hallmark of human cancer. Acetyl-CoA Carboxylases (ACCs) are key rate-limiting enzymes involved in fatty acid metabolism regulation by catalyzing the carboxylation of acetyl-CoA to malonyl-CoA. Previously, most studies focused on the role of ACC1 in fatty acid metabolism in cancer, while the function of ACC2 remains largely uncharacterized in human cancers, especially in ovarian cancer (OC). Here, we show that ACC2 was significantly downregulated in cancerous tissue of OC, and the downregulation of ACC2 is closely associated with lager tumor size, metastases and worse prognosis in OC patients. Downregulation of ACC2 promoted proliferation and metastasis of OC both in vitro and in vivo by enhancing FAO. Notably, mitochondria-associated ubiquitin ligase (MARCH5) was identified to interact with and downregulate ACC2 by ubiquitination and degradation in OC. Moreover, ACC2 downregulation-enhanced FAO contributed to the progression of OC promoted by MARCH5. In conclusion, our findings demonstrate that MARCH5-mediated downregulation of ACC2 promotes FAO and tumorigenesis in OC, suggesting MARCH5-ACC2 axis as a potent candidate for the treatment and prevention of OC.


Assuntos
Acetil-CoA Carboxilase , Ácidos Graxos , Neoplasias Ovarianas , Ubiquitina-Proteína Ligases , Feminino , Humanos , Acetilcoenzima A/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Regulação para Baixo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Neoplasias Ovarianas/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Fish Shellfish Immunol ; 146: 109387, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272331

RESUMO

Acetyl-CoA carboxylase (ACC) plays a regulatory role in both fatty acid synthesis and oxidation, controlling the process of lipid deposition in the liver. Given that existing studies have shown a close relationship between low phosphorus (P) and hepatic lipid deposition, this study was conducted to investigate whether ACC plays a crucial role in this relationship. Zebrafish liver cell line (ZFL) was incubated under low P medium (LP, P concentration: 0.77 mg/L) or adequate P medium (AP, P concentration: 35 mg/L) for 240 h. The results showed that, compared with AP-treated cells, LP-treated cells displayed elevated lipid accumulation, and reduced fatty acid ß-oxidation, ATP content, and mitochondrial mass. Furthermore, transcriptomics analysis revealed that LP-treated cells significantly increased lipid synthesis (Acetyl-CoA carboxylases (acc), Stearyl coenzyme A dehydrogenase (scd)) but decreased fatty acid ß-oxidation (Carnitine palmitoyltransferase I (cptI)) and (AMP-activated protein kinase (ampk)) mRNA levels compared to AP-treated cells. The phosphorylation of AMPK and ACC, and the protein expression of CPTI were significantly decreased in LP-treated cells compared with those in AP-treated cells. After 240 h of LP treatment, PF-05175157 (an ACC inhibitor) was supplemented in the LP treatment for an additional 12 h. PF-05175157-treated cells showed higher phosphorylation of ACC, higher protein expression of CPTI, and lower protein expression of FASN, lower TG content, enhanced fatty acid ß-oxidation, increased ATP content, and mitochondrial mass compared with LP-treated cells. PF-05175157 also relieved the LP-induced oxidative stress and inflammatory response. Overall, these findings suggest that ACC is a promising target for treating LP-induced elevation of lipid deposition in ZFL, and can alleviate oxidative stress and inflammatory response.


Assuntos
Acetil-CoA Carboxilase , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Fígado/metabolismo , Estresse Oxidativo , Ácidos Graxos/metabolismo , Fósforo , Lipídeos , Trifosfato de Adenosina/metabolismo
6.
Int J Food Microbiol ; 413: 110585, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38246023

RESUMO

Acetyl-CoA carboxylase (ACC), which catalyzes acetyl-CoA to produce malonyl-CoA, is crucial for the synthesis of mycotoxins, ergosterol, and fatty acids in various genera. However, its biofunction in Aspergillus flavus has not been reported. In this study, the accA gene was deleted and site-mutated to explore the influence of ACC on sporulation, sclerotium formation, and aflatoxin B1 (AFB1) biosynthesis. The results revealed that ACC positively regulated conidiation and sclerotium formation, but negatively regulated AFB1 production. In addition, we found that ACC is a succinylated protein, and mutation of lysine at position 990 of ACC to glutamic acid or arginine (accAK990E or accAK990R) changed the succinylation level of ACC. The accAK990E and accAK990R mutations (to imitate the succinylation and desuccinylation at K990 of ACC, respectively) downregulated fungal conidiation and sclerotium formation while increasing AFB1 production, revealing that the K990 is an important site for ACC's biofunction. These results provide valuable perspectives for future mechanism studies of the emerging roles of succinylated ACC in the regulation of the A. flavus phenotype, which is advantageous for the prevention and control of A. flavus hazards.


Assuntos
Acetil-CoA Carboxilase , Aspergillus flavus , Aspergillus flavus/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Virulência , Aflatoxina B1 , Mutação
7.
Pestic Biochem Physiol ; 198: 105711, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225069

RESUMO

Severe infestations of American sloughgrass (Beckmannia syzigachne (Steud.) Fernald) in wheat fields throughout Anhui Province, China, pose a significant threat to local agricultural production. This study aims to evaluate the susceptibility of 37 B. syzigachne populations collected from diverse wheat fields in Anhui Province to three commonly used herbicides: fenoxaprop-P-ethyl, mesosulfuron-ethyl, and isoproturon. Single-dose testing revealed that out of the 37 populations, 31, 26, and 11 populations had either evolved or were evolving resistance to fenoxaprop-P-ethyl, mesosulfuron-ethyl, and isoproturon, respectively. Among them, 25 populations displayed concurrent resistance to both fenoxaprop-P-ethyl and mesosulfuron-ethyl, while eight exhibited resistance to all three tested herbicides. Whole-plant bioassays confirmed that approximately 84% of the fenoxaprop-P-ethyl-resistant populations manifested high-level resistance (resistance index (RI) ≥10); 62% of the mesosulfuron-ethyl-resistant populations and 82% of the isoproturon-resistant populations exhibited low- to moderate-level resistance (2 ≤ RI <10). Three distinct target-site mutations were identified in 27% of fenoxaprop-P-ethyl-resistant populations, with no known resistance mutations detected in the remaining herbicide-resistant populations. The inhibition of cytochrome P450s (P450s) and/or glutathione S-transferases (GSTs) substantially increased susceptibility in the majority of resistant populations lacking mutations at the herbicide target site. In conclusion, resistance to fenoxaprop-P-ethyl and mesosulfuron-ethyl was widespread in B. syzigachne within Anhui Province's wheat fields, while resistance to isoproturon was rapidly evolving due to its escalating usage. Target-site mutations were present in approximately one-third of fenoxaprop-P-ethyl-resistant populations, and alternative mechanisms involving P450s and/or GSTs could explain the resistance observed in most of the remaining populations.


Assuntos
Herbicidas , Oxazóis , Compostos de Fenilureia , Propionatos , Triticum , Triticum/genética , Poaceae , China , Herbicidas/farmacologia , Resistência a Herbicidas/genética , Acetil-CoA Carboxilase/genética
8.
Int Immunol ; 36(3): 129-139, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38041796

RESUMO

To meet the energetic requirements associated with activation, proliferation, and survival, T cells switch their metabolic signatures from energetically quiescent to activated. However, little is known about the role of metabolic pathway controlling the development of invariant natural killer T (iNKT) cells. In the present study, we found that acetyl-CoA carboxylase 1 (ACC1), a rate-limiting enzyme for the fatty acid biosynthesis pathway, plays an essential role in the development of iNKT cells in the thymus. Mice lacking T-cell specific ACC1 showed a reduced number of iNKT cells with an increased proportion of iNKT cells at immature stages 0 and 1. Furthermore, mixed bone marrow (BM) chimera experiments revealed that T-cell intrinsic ACC1 expression was selectively important for the development of thymic iNKT cells, especially for the differentiation of the NKT1 cell subset. Our single-cell RNA-sequencing (scRNA-seq) data and functional analysis demonstrated that ACC1 is responsible for survival of developing iNKT cells. Thus, these findings highlighted a novel role of ACC1 in controlling thymic iNKT cell development mediated by the control of cell survival.


Assuntos
Células T Matadoras Naturais , Camundongos , Animais , Timo , Diferenciação Celular , Adipogenia , Ácidos Graxos/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo
9.
Pest Manag Sci ; 80(3): 1523-1532, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37966429

RESUMO

BACKGROUND: Brome grass (Bromus diandrus Roth) is prevalent in the southern and western cropping regions of Australia, where it causes significant economic damage. A targeted herbicide resistance survey was conducted in 2020 by collecting brome grass populations from 40 farms in Western Australia and subjecting these samples to comprehensive herbicide screening. One sample (population 172-20), from a field that had received 12 applications of clethodim over 20 years of continuous cropping, was found to be highly resistant to the acetyl-CoA carboxylase (ACCase)-inhibiting herbicides clethodim and quizalofop, and so the molecular basis of resistance was investigated. RESULTS: All 31 individuals examined from population 172-20 carried the same resistance-endowing point mutation causing an aspartate-to-glycine substitution at position 2078 in the translated ACCase protein sequence. A wild-type susceptible population and the resistant population had similar expression levels of plastidic ACCase genes. The level of resistance to quizalofop, either standalone or in mixture with clethodim, in population 172-20 was lower under cooler growing conditions. CONCLUSION: Target-site resistance to ACCase-inhibiting herbicides, conferred by one ACCase mutation, was selected in all tested brome plants infesting a field with a history of repeated clethodim use. This mutation appears to have been fixed in the infesting population. Notably, clethodim resistance in this population was not detected by the farmer, and a high future incidence of quizalofop resistance is anticipated. Herbicide resistance testing is essential for the detection of evolving weed resistance issues and to inform effective management strategies. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Bromus , Cicloexanonas , Herbicidas , Propionatos , Quinoxalinas , Humanos , Mutação , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Acetil-CoA Carboxilase/genética , Poaceae , Proteínas de Plantas/genética
10.
Int J Biol Macromol ; 256(Pt 2): 128417, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016612

RESUMO

Acetyl-CoA carboxylase (ACCase) is crucial for fatty acid biosynthesis and has potential applications in lipid accumulation and advanced biofuel production. Mutations like S659A and S1157A in Saccharomyces cerevisiae ACCase remove the Snf1-regulation sites, resulting in increased enzyme activity with positive effects on the fatty acid pathway. However, the molecular-level understanding of these mutations on ACCase activity remains unexplored. Here, molecular dynamics simulation was conducted to investigate the mutations-induced conformational changes in S. cerevisiae ACCase. The wild-type ACCase was observed to have significant deviation in structure compared to mutant. Additionally, fluctuation of residues associated with biotin binding and Snf1-recognition were reduced in mutant compared to wild-type. Furthermore, the wild-type demonstrated opening motions of the domains, whereas the mutant showed closing movement. The mutation-induced conformational changes were analysed using network parameters, i.e., cliques/communities. The mutant showed an increase in sizes of several communities in AC3-AC4-AC5 domains leading to rigidification. Also, a new community was added in AC1-BT in the mutant, which suggested a substantial shift in the protein conformation. Thus, this study provides a theoretical understanding of the increased activity of ACCase due to two mutations, which can pave the path for enzyme engineering towards improved fatty acid-based fuel and chemical production.


Assuntos
Acetil-CoA Carboxilase , Saccharomyces cerevisiae , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/química , Acetil-CoA Carboxilase/metabolismo , Mutação , Ácidos Graxos/metabolismo , Simulação de Dinâmica Molecular
11.
Pestic Biochem Physiol ; 197: 105648, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072523

RESUMO

Leptochloa chinensis populations in China have evolved widespread resistance to acetyl coenzyme A carboxylase (ACCase)-inhibiting herbicides cyhalofop-butyl (CyB) and metamifop (Met). 124 L. chinensis populations, randomly collected from rice fields in Jiangsu Province, were surveyed for CyB and Met resistance status, and all potential ACCase gene resistance-conferring mutations and effective pre-emergence herbicides for its control were investigated. Single-dose tests confirmed that 82 (66.1%) and 70 (56.4%) populations evolved resistance to CyB and Met, respectively. ACCase sequencing revealed that 56.4% of the populations contain plants with diverse target-site ACCase mutations (Ile1781Leu, Trp1999Cys, Trp2027Cys, Trp2027Ser, Ile2041Asn, Gly2096Ala, and in particular, a Leu1818Phe mutation). Notably, the Leu1818Phe mutation had been detected in 8 resistant populations, indicating this mutation was prone to occur in L. chinensis. Additionally, 9.7% of the populations may have single metabolic resistance to CyB, as these populations was susceptible to Met, and no any ACCase mutations were found. Moreover, the resistant populations with different ACCase mutations showed 6.5 to 33.6-fold resistance to CyB, and 4.4 to 82.6-fold resistance to Met. Importantly, five pre-emergence herbicides, including pretilachlor, pendimethalin, clomazone, pyraclonil, and mefenacet, all exhibited good control effect on resistant L. chinensis populations. This work confirmed the prevalence and distribution of CyB and Met resistance in L. chinensis. Target-site ACCase mutations made a major contribution to CyB and Met resistance. Pre-emergence herbicides could be valuable tools for management of resistant L. chinensis populations.


Assuntos
Herbicidas , Poaceae , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Mutação
12.
Pestic Biochem Physiol ; 197: 105650, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072525

RESUMO

Wild oat (Avena fatua L.) is a common and problematic weed in wheat fields in China. In recent years, farmers found it increasingly difficult to control A. fatua using acetyl-CoA carboxylase (ACCase)-inhibiting herbicides. The purpose of this study was to identify the molecular basis of clodinafop-propargyl resistance in A. fatua. In comparison to the S1496 population, whole dose response studies revealed that the R1623 and R1625 populations were 71.71- and 67.76-fold resistant to clodinafop-propargyl, respectively. The two resistant A. fatua populations displayed high resistance to fenoxaprop-p-ethyl (APP) and low resistance to clethodim (CHD) and pinoxaden (PPZ), but they were still sensitive to the ALS inhibitors mesosulfuron-methyl and pyroxsulam. An Ile-2041-Asn mutation was identified in both resistant individual plants. The copy number and relative expression of the ACCase gene in the resistant population were not significantly different from those in the S1496 population. Under the application of 2160 g ai ha -1 of clodinafop-propargyl, the fresh weight of the R1623 population was reduced to 74.9%; however, pretreatment with the application of the cytochrome P450 inhibitor malathion and the GST inhibitor NBD-Cl reduced the fresh weight to 50.91% and 47.16%, respectively, which proved the presence of metabolic resistance. This is the first report of an Ile-2041-Asn mutation and probable metabolic resistance in A. fatua, resulting in resistance to clodinafop-propargyl.


Assuntos
Avena , Herbicidas , Avena/genética , Poaceae/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Mutação
13.
Pestic Biochem Physiol ; 197: 105691, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072546

RESUMO

BACKGROUND: Leptochloa chinensis (L.) Nees is a troublesome weed across China in rice fields, and a suspected L. chinensis resistant population (R) that has survived the recommended field dose of cyhalofop-butyl was collected in a rice field of Hunan Province, China. In this study, we aimed to determine the acetyl-CoA carboxylase-inhibiting herbicide resistance profile of this R population and to investigate its mechanisms of resistance to cyhalofop-butyl. RESULTS: Compared with the susceptible population (S), the R population was confirmed to be 18.9-, 3.2-, 4.1-, 3.6- and 5.8- fold resistant to the APP herbicides cyhalofop-butyl, haloxyfop-P-methyl, clodinafop-propargyl, metamifop and fenoxaprop-P-ethyl, respectively. ACCase gene sequencing analysis revealed no known resistance mutations for TSR in the R population. Pretreatment with the glutathione S-transferase (GST) inhibitor 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) and cytochrome P450 (CYP450) inhibitor malathion reversed resistance to cyhalofop-butyl. The GST gene GSTU1 and CYP450 gene CYP707A5 were constitutively upregulated in the R population according to RNA-seq analysis and RT-qPCR verification. The molecular docking results indicated a good affinity of the active site for five APP herbicides with GSTU1 and CYP707A5. CONCLUSION: This study shows that the GSTU1 and CYP707A5 genes expressed highly in the R population may be responsible for cyhalofop-butyl resistance in L. chinensis.


Assuntos
Glutationa Transferase , Herbicidas , Glutationa Transferase/genética , Simulação de Acoplamento Molecular , Proteínas de Plantas/genética , Poaceae/genética , Herbicidas/farmacologia , Resistência a Herbicidas/genética , Acetil-CoA Carboxilase/genética , Sistema Enzimático do Citocromo P-450/genética
14.
J Transl Med ; 21(1): 877, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049827

RESUMO

BACKGROUND: ND630 is believed to be a new therapy pharmacologic molecule in targeting the expression of ACACA and regulating the lipid metabolism. However, the function of ND630 in prostate cancer remains unknown. KIF18B, as an oncogene, plays a vital role in prostate cancer progression. circKIF18B_003 was derived from oncogene KIF18B and was markedly overexpressed in prostate cancer tissues. We speculated that oncoprotein KIF18B-derived circRNA circKIF18B_003 might have roles in prostate cancer promotion. The aim of this study was to validate whether ND630 could control ACACA and lipid reprogramming in prostate cancer by regulating the expression of circKIF18B_003. METHODS: RT-qPCR was used to analyze the expression of circKIF18B_003 in prostate cancer cell lines and prostate cancer samples. circKIF18B_003 expression was modulated in prostate cancer cells using circKIF18B_003 interference or overexpression plasmid. We examined the function and effects of circKIF18B_003 in prostate cancer cells using CCK-8, colony formation, wound healing, and Transwell invasion assays and xenograft models. Fluorescence in situ hybridization (FISH) was performed to evaluate the localization of circKIF18B_003. RNA immunoprecipitation (RIP), RNA pull down, and luciferase reporter assay were performed to explore the potential mechanism of circKIF18B_003. RESULTS: The function of ND630 was determined in this study. circKIF18B_003 was overexpressed in prostate cancer tissues, and overexpression of circKIF18B_003 was associated with poor survival outcome of prostate cancer patients. The proliferation, migration, and invasion of prostate cancer cells were enhanced after up-regulation of circKIF18B_003. circKIF18B_003 is mainly located in the cytoplasm of prostate cancer cells, and the RIP and RNA pull down assays confirmed that circKIF18B_003 could act as a sponge for miR-370-3p. Further study demonstrated that up-regulation of circKIF18B_003 increased the expression of ACACA by sponging miR-370-3p. The malignant ability of prostate cancer cells enhanced by overexpression of circKIF18B_003 was reversed by the down-regulation of ACACA. We found that overexpression of circKIF18B_003 was associated with lipid metabolism, and a combination of ND-630 and docetaxel markedly attenuated tumor growth. CONCLUSION: ND630 could control ACACA and lipid reprogramming in prostate cancer by regulating the expression of circKIF18B_003. ND630 and circKIF18B_003 may represent a novel target for prostate cancer.


Assuntos
MicroRNAs , Neoplasias da Próstata , RNA Circular , Humanos , Masculino , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Hibridização in Situ Fluorescente , Cinesinas/genética , Cinesinas/metabolismo , Lipídeos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , RNA Circular/genética
15.
ACS Synth Biol ; 12(12): 3521-3530, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37983631

RESUMO

Glycolyl-CoA carboxylase (GCC) is a new-to-nature enzyme that catalyzes the key reaction in the tartronyl-CoA (TaCo) pathway, a synthetic photorespiration bypass that was recently designed to improve photosynthetic CO2 fixation. GCC was created from propionyl-CoA carboxylase (PCC) through five mutations. However, despite reaching activities of naturally evolved biotin-dependent carboxylases, the quintuple substitution variant GCC M5 still lags behind 4-fold in catalytic efficiency compared to its template PCC and suffers from futile ATP hydrolysis during CO2 fixation. To further improve upon GCC M5, we developed a machine learning-supported workflow that reduces screening efforts for identifying improved enzymes. Using this workflow, we present two novel GCC variants with 2-fold increased carboxylation rate and 60% reduced energy demand, respectively, which are able to address kinetic and thermodynamic limitations of the TaCo pathway. Our work highlights the potential of combining machine learning and directed evolution strategies to reduce screening efforts in enzyme engineering.


Assuntos
Dióxido de Carbono , Carboxiliases , Dióxido de Carbono/metabolismo , Carboxiliases/metabolismo , Metilmalonil-CoA Descarboxilase , Biotina/metabolismo , Acetil-CoA Carboxilase/genética
16.
Appl Environ Microbiol ; 89(11): e0101823, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37855634

RESUMO

IMPORTANCE: Understanding the regulatory pathways by which fungi respond to environmental signals through interlinked genes provides insights into the interactions between fungi and insects. The coordinated optimization of the regulatory networks is necessary for fungi to adapt to their habitats. We demonstrated that the synergistic regulation of sensor histidine kinase (SLN1) and acetyl-CoA carboxylase (ACC1) plays a critical role in regulating the fungal response to Sinella curviseta stress. Furthermore, we found that the enhanced production of trehalose, carotenoids, and 5-MTHF plays crucial role in the resistance to the fungivore. Our results provide insights into the understanding of the adaptation of N. crassa to environmental stimuli.


Assuntos
Artrópodes , Neurospora crassa , Animais , Histidina Quinase , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Neurospora crassa/genética
17.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895167

RESUMO

Acetyl-CoA carboxylase beta (ACACB) is a functional candidate gene that impacts fat deposition. In the present study, we sequenced exon 37-intron 37, exon 46-intron 46, and intron 47 of yak ACACB using hybrid pool sequencing to search for variants and genotyped the gene in 593 Gannan yaks via Kompetitive allele-specific polymerase chain (KASP) reaction to determine the effect of ACACB variants on carcass and meat quality traits. Seven single nucleotide polymorphisms were detected in three regions. Eight effective haplotypes and ten diplotypes were constructed. Among them, a missense variation g.50421 A > G was identified in exon 37 of ACACB, resulting in an amino acid shift from serine to glycine. Correlation analysis revealed that this variation was associated with the cooking loss rate and yak carcass weight (p = 0.024 and 0.012, respectively). The presence of haplotypes H5 and H6 decreased Warner-Bratzler shear force (p = 0.049 and 0.006, respectively), whereas that of haplotypes H3 and H4 increased cooking loss rate and eye muscle area (p = 0.004 and 0.034, respectively). Moreover, the presence of haplotype H8 decreased the drip loss rate (p = 0.019). The presence of one and two copies of haplotypes H1 and H8 decreased the drip loss rate (p = 0.028 and 0.004, respectively). However, haplotype H1 did not decrease hot carcass weight (p = 0.011), whereas H3 increased the cooking loss rate (p = 0.007). The presence of one and two copies of haplotype H6 decreased Warner-Bratzler shear force (p = 0.014). The findings of the present study suggest that genetic variations in ACACB can be a preferable biomarker for improving yak meat quality.


Assuntos
Acetil-CoA Carboxilase , Polimorfismo de Nucleotídeo Único , Animais , Bovinos , Acetil-CoA Carboxilase/genética , Genótipo , Fenótipo , Carne/análise , Haplótipos
18.
BMC Genomics ; 24(1): 637, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875812

RESUMO

BACKGROUND: Polyadenylation is a crucial process that terminates mRNA molecules at their 3'-ends. It has been observed that alternative polyadenylation (APA) can generate multiple transcripts from a single gene locus, each with different polyadenylation sites (PASs). This leads to the formation of several 3' untranslated regions (UTRs) that vary in length and composition. APA has a significant impact on approximately 60-70% of eukaryotic genes and has far-reaching implications for cell proliferation, differentiation, and tumorigenesis. RESULTS: In this study, we conducted long-read, single-molecule sequencing of mRNA from peanut seeds. Our findings revealed that over half of all peanut genes possess over two PASs, with older developing seeds containing more PASs. This suggesting that the PAS exhibits high tissue specificity and plays a crucial role in peanut seed maturation. For the peanut acetyl-CoA carboxylase A1 (AhACCA1) gene, we discovered four 3' UTRs referred to UTR1-4. RT-PCR analysis showed that UTR1-containing transcripts are predominantly expressed in roots, leaves, and early developing seeds. Transcripts containing UTR2/3 accumulated mainly in roots, flowers, and seeds, while those carrying UTR4 were constitutively expressed. In Nicotiana benthamiana leaves, we transiently expressed all four UTRs, revealing that each UTR impacted protein abundance but not subcellular location. For functional validation, we introduced each UTR into yeast cells and found UTR2 enhanced AhACCA1 expression compared to a yeast transcription terminator, whereas UTR3 did not. Furthermore, we determined ACC gene structures in seven plant species and identified 51 PASs for 15 ACC genes across four plant species, confirming that APA of the ACC gene family is universal phenomenon in plants. CONCLUSION: Our data demonstrate that APA is widespread in peanut seeds and plays vital roles in peanut seed maturation. We have identified four 3' UTRs for AhACCA1 gene, each showing distinct tissue-specific expression patterns. Through subcellular location experiment and yeast transformation test, we have determined that UTR2 has a stronger impact on gene expression regulation compared to the other three UTRs.


Assuntos
Acetil-CoA Carboxilase , Arachis , Arachis/genética , Arachis/metabolismo , Acetil-CoA Carboxilase/genética , Saccharomyces cerevisiae/genética , Regiões 3' não Traduzidas , Poliadenilação , RNA Mensageiro/metabolismo
19.
Cell Death Differ ; 30(12): 2462-2476, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37845385

RESUMO

Cyclin-dependent kinases (CDKs) regulate cell cycle progression and the transcription of a number of genes, including lipid metabolism-related genes, and aberrant lipid metabolism is involved in prostate carcinogenesis. Previous studies have shown that CDK13 expression is upregulated and fatty acid synthesis is increased in prostate cancer (PCa). However, the molecular mechanisms linking CDK13 upregulation and aberrant lipid metabolism in PCa cells remain largely unknown. Here, we showed that upregulation of CDK13 in PCa cells increases the fatty acyl chains and lipid classes, leading to lipid deposition in the cells, which is positively correlated with the expression of acetyl-CoA carboxylase (ACC1), the first rate-limiting enzyme in fatty acid synthesis. Gain- and loss-of-function studies showed that ACC1 mediates CDK13-induced lipid accumulation and PCa progression by enhancing lipid synthesis. Mechanistically, CDK13 interacts with RNA-methyltransferase NSUN5 to promote its phosphorylation at Ser327. In turn, phosphorylated NSUN5 catalyzes the m5C modification of ACC1 mRNA, and then the m5C-modified ACC1 mRNA binds to ALYREF to enhance its stability and nuclear export, thereby contributing to an increase in ACC1 expression and lipid deposition in PCa cells. Overall, our results disclose a novel function of CDK13 in regulating the ACC1 expression and identify a previously unrecognized CDK13/NSUN5/ACC1 pathway that mediates fatty acid synthesis and lipid accumulation in PCa cells, and targeting this newly identified pathway may be a novel therapeutic option for the treatment of PCa.


Assuntos
Acetil-CoA Carboxilase , Neoplasias da Próstata , Humanos , Masculino , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Proteína Quinase CDC2 , Ácidos Graxos , Lipídeos , Metiltransferases , Proteínas Musculares , Próstata/metabolismo , Neoplasias da Próstata/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
BMC Biotechnol ; 23(1): 35, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684579

RESUMO

BACKGROUND: Biofuel research that aims to optimize growth conditions in microalgae is critically important. Chlamydomonas reinhardtii is a green microalga that offers advantages for biofuel production research. This study compares the effects of nitrogen-, sulfur-, and nitrogen and sulfur- deprivations on the C. reinhardtii starchless mutant cc5373-sta6. Specifically, it compares growth, lipid body accumulation, and expression levels of acetyl-CoA carboxylase (ACC) and phosphoenolpyruvate carboxylase (PEPC). RESULTS: Among nutrient-deprived cells, TAP-S cells showed significantly higher total chlorophyll, cell density, and protein content at day 6 (p < 0.05). Confocal analysis showed a significantly higher number of lipid bodies in cells subjected to nutrient deprivation than in the control over the course of six days; N deprivation for six days significantly increased the size of lipid bodies (p < 0.01). In comparison with the control, significantly higher ACC expression was observed after 8 and 24 h of NS deprivation and only after 24 h with N deprivation. On the other hand, ACC and PEPC expression at 8 and 24 h of S deprivation was not significantly different from that in the control. A significantly lower PEPC expression was observed after 8 h of N and NS deprivation (p < 0.01), but a significantly higher PEPC expression was observed after 24 h (p < 0.01). CONCLUSIONS: Based on our findings, it would be optimum to cultivate cc5373-sta6 cells in nutrient deprived conditions (-N, -S or -NS) for four days; whereby there is cell growth, and both a high number of lipid bodies and a larger size of lipid bodies produced.


Assuntos
Chlamydomonas reinhardtii , Gotículas Lipídicas , Chlamydomonas reinhardtii/genética , Biocombustíveis , Acetil-CoA Carboxilase/genética , Nitrogênio , Enxofre , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...